42 research outputs found

    Human-Robot Trust Assessment From Physical Apprehension Signals

    Get PDF

    Self-rehabilitation of acquired brain injury patients including neglect and attention deficit disorder with a tablet game in a clinical setting

    Get PDF
    We designed and evaluated a whack-a-mole (WAM) style game (see Figure 1) in a clinical randomized controlled trial (RCT) with reminder-assisted but self-initiated use over the period of a month with 43 participants from a post-lesion pool. While game play did not moderate rehabilitative progress indices of standard neuropsychological control tests, it did significantly improve in-game performance when compared to the control group. Its performance indicators and interaction data were highly accurate in predicting neglect and which hand the patients used for input. Patients found playing beneficial to their rehabilitation and attributed gains in the attention training properties of the game. The game showed potential for bedside assessment, insight support, and motivation by providing knowledge about rehabilitative progress

    Quantifying Water-Mediated Protein–Ligand Interactions in a Glutamate Receptor: A DFT Study

    Get PDF
    It is becoming increasingly clear that careful treatment of water molecules in ligand–protein interactions is required in many cases if the correct binding pose is to be identified in molecular docking. Water can form complex bridging networks and can play a critical role in dictating the binding mode of ligands. A particularly striking example of this can be found in the ionotropic glutamate receptors. Despite possessing similar chemical moieties, crystal structures of glutamate and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) in complex with the ligand-binding core of the GluA2 ionotropic glutamate receptor revealed, contrary to all expectation, two distinct modes of binding. The difference appears to be related to the position of water molecules within the binding pocket. However, it is unclear exactly what governs the preference for water molecules to occupy a particular site in any one binding mode. In this work we use density functional theory (DFT) calculations to investigate the interaction energies and polarization effects of the various components of the binding pocket. Our results show (i) the energetics of a key water molecule are more favorable for the site found in the glutamate-bound mode compared to the alternative site observed in the AMPA-bound mode, (ii) polarization effects are important for glutamate but less so for AMPA, (iii) ligand–system interaction energies alone can predict the correct binding mode for glutamate, but for AMPA alternative modes of binding have similar interaction energies, and (iv) the internal energy is a significant factor for AMPA but not for glutamate. We discuss the results within the broader context of rational drug-design

    Low-cost 3DUI using hand tracking and controllers

    No full text

    Determining Movement Measures for Trust Assessment in Human-Robot Collaboration Using IMU-Based Motion Tracking

    No full text

    Using Spatio-Temporal Data from Trail-Making Tests to Assess Neglect

    No full text

    Testing Augmented Reality Systems for Spotting Sub-Surface Impurities

    No full text
    Part 1: PracticeInternational audienceTo limit musculoskeletal disorders we are working towards implementing collaborative robotics in strenuous or repetitive production work. Our objective is to evaluate augmented reality (AR) devices for assisting in near-distance tasks before applying and testing the displays in the context of human-robot collaboration in a production setting. This chapter describes the hardware setup and procedure for testing AR systems for showing sub-surface positions of foreign elements in an opaque mass. The goal is it test four types of setup in terms of user accuracy and speed, the four setups being a head-mounted see-through display, a mounted tablet-based see-through display, top-down surface projection and overlays on a static monitor. The experiment is carried out using a tracked HTC Vive controller with a needle attachment. Precision tasks are performed by 48 participants and each display is evaluated using the System Usability Scale and the NASA Task Load Index
    corecore